Don't miss a digital issue! Renew/subscribe for FREE today.
×
Compendium
September 2015
Volume 36, Issue 9

Implant Dentistry: Innovations, Improvements Creating an Ever-Advancing Landscape

Advances in implant dentistry have altered the manner in which dental professionals consider and execute treatment in their daily practices. Innovations in implant therapies, designs, and techniques, combined with developments in regenerative materials, have stimulated rapid growth in this segment of dentistry.

Stephen J. Chu, DMD, MSD, CDT; and Maurice A. Salama, DMD

Since the early 1980s when P.I. Bränemark revolutionized the concept of osseointegration and bone integration to a titanium metal surface, dentistry has simply not been the same, and implant dentistry has continued to evolve.

By today’s implant dentistry standards, implant survival and osseointegration are afterthoughts; implant systems that cannot achieve this clinical benchmark consistently will not survive the competitive marketplace.1-3 Primary osseointegration can be thought of as initial stability of the implant offered by the macro-design of the implant body. Many manufacturers have created aggressive thread and pitch patterns to increase primary stability, especially in extraction sockets where initial bone-to-implant contact is a precious commodity. This design shift has allowed immediate or instantaneous temporization (ie, provisional restoration) of the implant placed into healed or augmented edentulous ridges and extraction sockets with consistent results in regards to implant survival.4-7 Secondary osseointegration is provided by the micro-surface texture of the implant, which has an effect over a 2-month healing period during which initial osseointegration is achieved.8,9 Implant position and diameter are key characteristics for complete osseointegration (ie, absence of labial plate dehiscence defects) of implants without placement of a hard-tissue graft.10-12

Immediate Implant Therapy

Immediate single-, partial-, or full-arch implant placement and provisional restoration therapy protocols, whether with healed or augmented ridges and extraction sockets, have become the “norm” because of the aforementioned innovations, enabling many clinical advantages. Consistent survival rate outcomes of 94% to 97% can be attained; such rates are comparable to delayed sites. The most impactful advantage may be the efficiency of treatment whereby the same number of clinical procedures is provided, however in fewer dental appointments, thus reducing overall treatment time. Providing “instantaneous teeth” at the time of implant placement surgery is a tremendous service to the patient, enhancing the transition from a removable to a fixed restoration.

Esthetics

Much effort has been put into esthetic outcomes, especially with esthetic zone implants. Treatment strategies have been devised to maximize mid- and long-term results, particularly with immediate extraction socket implants.

The “dual-zone” bone grafting treatment concept is one of maintaining or preserving existing hard and soft tissues versus recreating and reconstituting the periodontium.13 The “recipe” for success seems to be flapless tooth extraction, having an intact bony socket, use of a smaller-diameter implant, placement with a palatal-biased position, hard-tissue grafting the buccal plate–implant interface “gap” as well as the soft-tissue “zone,” and provisional restoration fabrication to contain, maintain, and protect the graft material during the healing phase of therapy.

In a cone-beam computed tomography study, minimum resorption of 0.1 mm of the buccal plate thickness was shown over a 6-month period.14 Other studies showed similar esthetic results in ridge contour change retrospectively over a 6-month to 4-year recall period.15

The same peri-implant soft-tissue enhancement results can be achieved if a connective tissue graft or bone graft is placed into the soft-tissue zone and contained with the provisional restoration or custom-contoured healing abutment. What remains to be seen is which bone graft would be best from a biologic response standpoint.16

Partial Extraction Therapies (PET)

The pattern and degree of resorption that takes place following the extraction of teeth has been extensively reported in the literature.17 This loss occurs as a result of the destruction of the bundle bone–periodontal ligament (BB–PDL) complex following the removal of a tooth and leads to resorption of these fragile tissues supporting the buccofacial ridge contour.18 Positioning a pontic restoration at a missing tooth site requires bulk of residual ridge tissue and a positive contour to create esthetic harmony between the restoration and the alveolar ridge. It is a well-established concept that to ideally or even adequately restore an edentulous or partially dentate patient in most instances requires management of these extraction sites by careful surgical intervention, either to prevent tissue loss or to augment the already collapsed tissues.19,20 The literature is abundant with these management techniques, which may be divided into pre-ridge collapse interventions, namely ridge preservation techniques, and post-ridge collapse interventions, namely bone augmentation, soft-tissue augmentation, or a combination thereof.19-22 A wealth of literature supports their application, though none of the aforementioned techniques can circumvent the primary cause of resorption, namely the destruction of the vascularized bundle bone and its ultimate effect—partial or total ridge collapse.20

To maintain this tissue complex, the tooth root, its ligament fibers, vascular supply, and attachment to bone need to be retained.23 Thus, the submerging of roots or submerged root technique (SRT) may achieve exactly that and has long since been reported on.24 This concept has been demonstrated with success in the development of pontic sites. An infection-free tooth root, whether treated endodontically or with vital pulp, when submerged, may support the ridge architecture to develop a pontic site.25 The technique is, however, contraindicated by endodontic apical pathology. Endodontic treatment first would need to be successfully carried out or the root would need extraction and an alternative ridge management procedure applied.

The socket-shield technique, in addition to its application as a buccofacial ridge preservation technique at immediate implant placement, overcomes this limitation and provides the clinician with an alternative method to submerge the buccofacial tooth root section, retain the vital periodontal tissues buccofacial to the root, and develop a pontic site with little or no collapse in a buccopalatal dimension.23 This exciting world of partial extraction therapy (PET) for implant and pontic sites may be an optimal solution for extraction site resorption and remodeling and could constitute a paradigm shift in case management, especially within the esthetic zone.

Implant Design

Recent research on implant design, such as connection type (ie, external or internal hex, flat or conical) and platform switching, relative to initial marginal stability indicates that design may not be able to overcome biologic principles and the need for re-establishment of the dentogingival complex (sulcus depth, epithelial and connective tissue attachment = biologic width) first described by Gargiulo et al in 1961 and further delineated by Kois in 1994.26,27 The importance of soft-tissue thickness as a protective barrier of bone has been acknowledged.28-31 When less than 2 mm of soft tissue is present, 1.2 mm to 1.7 mm of bone loss can be anticipated. Conversely, if more than 3 mm of vertical soft-tissue thickness is present, then bone stability can be realized with change of 0.1 mm to 0.4 mm over a 2-year longitudinal period.

Mechanical alternation of the implant or abutment surface (ie, uniform horizontal repeated patterns) has little positive effective or clinical advantage if the soft tissues are thin (≤ 2 mm). Platform switching may have a benefit but only tenths of millimeters due to the ever presence of bacterial plaque and the inability of tissue cells to adhere to contaminated and infected implant–abutment surfaces. It must be understood that the physical diameter of an implant component at the implant–abutment connection is critical for prosthetic stability and “biologic seal” and may be more important than internal shape and fit of such components.

Initial marginal bone stability should not be intermixed or confused with peri-implantitis. However, the lack of initial marginal bone stability could be the “nidus” for peri-implantitis.

CAD/CAM

CAD/CAM technology has been a “game-changing” innovation in implant dentistry. The so-called digital workflow enhances efficiency and consistency of results—specifically precision fit of extended-span and full-arch fixed dental prostheses frameworks compared to those that are fabricated through casting techniques.32 Zirconia frameworks are resistant to deformation when firing layered ceramics. In addition, luting metal inserts to the zirconia substructure also ensures a passive fit that cannot be achieved with traditional metal-ceramic full-arch bridges.

Implant-Related Innovations

Peri-implant soft-tissue “physical” support is critical at the time of tooth removal; therefore, future provisional restoration strategies at the soft-tissue level will incorporate prefabricated “shells” or “sleeves” to support these tissues, not unlike prefabricated crown-formers for teeth.33

Surface treatment of implant and abutment components using argon gas-plasma charging devices has underscored the importance of enhanced disinfection and sterilization.34 Enhanced osseointegration and cell adherence to prosthetic components, whether definitive or provisional, to minimize soft-tissue recession and collapse may be beneficial future technologies.

Regenerative Materials

Socket preservation membranes utilizing cross-linked collagen barriers and low-turnover bone graft particulates have been used for years to manage immediate extraction sites with a high degree of partial success. Rarely can the ridge be “preserved” completely (see above) and the remaining deficiencies must then be managed separately at a second stage using additional bone and/or soft-tissue augmentation procedures.

Bone grafting substitutes come in various shapes, sizes, and sources, including allograft (human), xenograft (animal), and synthetics (β-tricalcium phosphate-hydroxyapatite [βTCP-HA]). There appears to be controversy over which bone graft materials would perform best in extraction sites, adjacent to implants, and for contour grafting outside the labial plate to maintain or enhance ridge contour. The decision would be based upon the resorption and replacement rate of each bone graft substitute material. Synthetic and xenograft products seem to have a lower turnover rate and will remain the longest and, therefore, are best suited for contour or sinus grafts where this is preferable. Higher-turnover products like autologous chips and cancellous allograft bone would be ideal in extraction sites slated for future implant placement or adjacent to implants with marginal bone defects. The debate regarding an optimal bone graft material is ongoing, and this continues to be researched. One solution that has been suggested is to utilize a combination of 50:50% high- and low-turnover products in combination. More research is required before a determination can be made with any level of confidence. Therefore, biologics and regenerative materials continue to be rapidly growing arenas in implant dentistry.

References

1. Wagenberg B, Froum SJ. A retrospective study of 1925 consecutively placed immediate implants from 1988 to 2004. Int J Oral Maxillofac Implants. 2006;21(1):71-80.

2. El-Chaar ES. Immediate placement and provisionalization of implant-supported, single-tooth restorations: a retrospective study. Int J Periodontics Restorative Dent. 2011;31(4):409-419.

3. Schnitman PA, Wöhrle PS, Rubenstein JE. Immediate fixed interim prostheses supported by two-stage threaded implants: methodology and results. J Oral Implantol. 1990;16(2):96-105.

4. den Hartog L, Raghoebar GM, Stellingsma K, et al. Immediate non-occlusal loading of single implants in the aesthetic zone: a randomized clinical trial. J Clin Periodontol. 2011;38(2):186-194.

5. Cooper LF, Reside G, Raes F, et al. Immediate provisionalization of dental implants in grafted alveolar ridges in the esthetic zone: a 5-year evaluation. Int J Periodontics Restorative Dent. 2014;34(4):477-486.

6. Wöhrle PS. Single-tooth replacement in the aesthetic zone with immediate provisionalization: fourteen consecutive case reports. Pract Periodontics Aesthet Dent. 1998;10(9):1107-1114.

7. Kan JY, Rungcharassaeng K, Lozada J. Immediate placement and provisionalization of maxillary anterior single implants: 1-year prospective study. Int J Oral Maxillofac Implants. 2003;18(1):31-39.

8. Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem. 1994;56(3):340-347.

9. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. 2003;14(3):251-262.

10. Caneva M, Salata LA, de Souza SS, et al. Influence of implant positioning in extraction sockets on osseointegration: histomorphometric analyses in dogs. Clin Oral Implants Res. 2010;21(1):43-49.

11. Caneva M, Salata LA, de Souza SS, et al. Hard tissue formation adjacent to implants of various size and configuration immediately placed into extraction sockets: an experimental study in dogs. Clin Oral Implants Res. 2010;21(9):885-890.

12. Tarnow DP, Chu SJ. Human histologic verification of osseointegration of an immediate implant placed into a fresh extraction socket with excessive gap distance without primary flap closure, graft, or membrane: a case report. Int J Periodontics Restorative Dent. 2011;31(5):515-521.

13. Chu SJ, Salama MA, Salama H, et al. The dual-zone therapeutic concept of managing immediate implant placement and provisional restoration in anterior extraction sockets. Compend Contin Educ Dent. 2012;33(7):524-534.

14. Lee EA, Gonzalez-Martin, O, Fiorellini, J. Lingualized flapless implant placement into fresh extraction sockets preserves buccal alveolar bone: a cone beam computed tomography study. Int J Periodontics Restorative Dent. 2014;34(1):61-68.

15. Tarnow D, Chu SJ, Salama MA, et al. Flapless postextraction socket implant placement in the esthetic zone: Part 1. The effect of bone grafting and/or provisional restoration on facial-palatal ridge dimensional change - a retrospective cohort study. Int J Periodontics Restorative Dent. 2014;34(3):323-331.

16. Rungcharassaeng K, Kan JY, Yoshino S, et al. Immediate implant placement and provisionalization with and without a connective tissue graft: an analysis of facial gingival tissue thickness. Int J Periodontics Restorative Dent. 2012;32(6):657-663.

17. Van der Weijden F, Dell’Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol. 2009;36(12):1048-1058.

18. Gluckman H, Du Toit J. The management of recession midfacial to immediately placed implants in the aesthetic zone. International Dentistry - African Edition. 2015;5(1):6-15.

19. Kuchler U, von Arx T. Horizontal ridge augmentation in conjunction with or prior to implant placement in the anterior maxilla: a systematic review. Int J Oral Maxillofac Implants. 2014;29 suppl:14-24.

20. Horváth A, Mardas N, Mezzomo LA, et al. Alveolar ridge preservation. A systematic review. Clin Oral Investig. 2013;17(2):341-363.

21. Vignoletti F, Matesanz P, Rodrigo D, et al. Surgical protocols for ridge preservation after tooth extraction. A systematic review. Clin Oral Implants Res. 2012;23 suppl 5:22-38.

22. Levine RA, Huynh-Ba G, Cochran DL. Soft tissue augmentation procedures for mucogingival defects in esthetic sites. Int J Oral Maxillofac Implants. 2014;29 suppl:155-185.

23. Hürzeler MB, Zuhr O, Schupbach P, et al. The socket-shield technique: a proof-of-principle report. J Clin Periodontol. 2010;37(9):855-862.

24. Malmgren B, Cvek M, Lundberg M, Frykholm A. Surgical treatment of ankylosed and infrapositioned reimplanted incisors in adolescents. Scand J Dent Res. 1984;92(5):391-399.

25. Salama M, Ishikawa T, Salama H, et al. Advantages of the root submergence technique for pontic site development in esthetic implant therapy. Int J Periodontics Restorative Dent. 2007;27(6):521-527.

26. Gargiulo AW, Wentz FM, Orban B. Dimensions and relations of the dentogingival junction in humans. J Periodontol. 1961;32(3):261-267.

27. Kois, JC. Altering gingival levels: the restorative connection. Part I: biologic variables. J Esthet Dent. 1994;6(1):3-7.

28. Linkevicius T, Apse P, Grybauskas S, Puisys A. Influence of thin mucosal tissues on crestal bone stability around implants with platform switching: a 1-year pilot study. J Oral Maxillofac Surg. 2010;68(9):2272-2277.

29. Linkevicius T, Apse P, Grybauskas S, Puisys A. The influence of soft tissue thickness on crestal bone changes around implants: a 1-year prospective controlled clinical trial. Int J Oral Maxillofac Implants. 2009;24(4):712-719.

30. Linkevicius T, Puisys A, Svediene O, et al. Radiological comparison of laser-microtextured and platform-switched implants in thin mucosal biotype. Clin Oral Implants Res. 2015;26(5):599-605.

31. Linkevicius T, Puisys A, Linkeviciene L, et al. Crestal Bone Stability around implants with Horizontally Matching Connection after Soft Tissue Thickening: A Prospective Clinical Trial. Clin Implant Dent Relat Res. 2015;17(3):497-508.

32. Katsoulis J, Mericske-Stern R, Rotkina L, et al. Precision of fit of implant-supported screw-retained 10-unit computer-aided-designed and computer-aided-manufactured frameworks made from zirconium dioxide and titanium: an in vitro study. Clin Oral Implants Res. 2014;25(2):165-174.

33. Chu SJ, Hochman, MN, Tan-Chu JH, et al. A novel prosthetic device and method for guided tissue preservation of immediate postextraction socket implants. Int J Periodontics Restorative Dent. 2014;34 suppl 3:s9-s17.

34. Canullo L, Penarrocha D, Micarelli C, et al. Hard tissue response to argon plasma cleaning/sterilization of customized titanium abutments versus 5-second steam cleaning: results of a 2-year post-loading follow-up from an explanatory randomised controlled trial in periodontally healthy patients. Eur J Oral Implantol. 2013;6(3):1-10.

About the Authors

Stephen J. Chu, DMD, MSD, CDT
Clinical Associate Professor
Ashman Department of Periodontology & Implant Dentistry
New York University College of Dentistry
New York, New York

Maurice A. Salama, DMD
Private Practice
Atlanta, Georgia

© 2024 BroadcastMed LLC | Privacy Policy